ENERGIEEFFIZIENTE SCHULEN – VON DER 3-LITER-HAUS-SCHULE BIS ZUM EFFIZIENZHAUS PLUS BILDUNGSBAU

- Abteilung Energieeffizienz und Raumklima, Arbeitsgruppe Gebäude Quartier Stadt
- Hans Erhorn Prinzipal Adviser

Auf Wissen bauen

Gesellschaftliche Randbedingungen

Pariser Klimakonferenz 2015 Ziel ist die Erderwärmung auf deutlich unter 2 °C (möglichst unter 1,5 °C) zu begrenzen, Länder definieren ihre Klimaschutzziele selbst

Bundes-Klimaschutzgesetz 2021 Deutschland soll bis 2045 klimaneutral werden, zulässige Jahresemissionsmengen u.a. für den Gebäudesektor, öffentliche Hand hat eine Vorbildfunktion

Energetische Sanierung von Schulen hat einen besonderen Stellenwert:

- Bildungseinrichtungen prägen nachhaltig die Gesellschaftswerte
- Größtmögliche Durchdringung der Gesellschaft: sozial, kulturell, alle Altersgruppen
- Öffentliche Hand wird ihrer Vorbildwirkung gerecht

Forschungsinitiativen des Bundes

Energieeffiziente Schulen – EnEff:Schule

- **2008 2017**
- 3-Liter-Haus Schulen, Plusenergieschulen
- 12 Pilotvorhaben
- Unterschiedliche Anforderungsniveaus:
 - 3-Liter: Raumheizung + Hilfsenergie
 - Plusenergie: Primär-/Endenergie mit/ohne Nutzerstrom

Effizienzhaus Plus – Bildungsbauten

- 2015 laufend (2011 laufend)
- Effizienzhaus Plus Standard
- 7 Pilotvorhaben
- Festgelegte Definition:
 - EnEV/GEG-Rahmen + Nutzerstrom

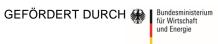
7 Sanierungen

- 4 Plusenergieschulen
- 3 Drei-Liter-Haus-Schulen

5 Neubauten

- 4 Plusenergieschulen
- 1 Drei-Liter-Haus-Schule

	Schulstandort	Schulart	Baujahr	Sanierungs- zeitraum	Beheizte Netto- grundfläche [m²]	Ener- getisches Ziel
	Olbersdorf	Förderschule	1927/28	2009 - 2011	4.439	3-Liter- Haus-Schule
	Rostock	Gymnasium	1960/61	2009 - 2015	4.140	Plusenergie- Schule
(D	Cottbus	Gymnasium	1974	2010 - 2012	8.048	3-Liter- Haus-Schule
SANIERUNG	Marktoberdorf	Gymnasium	1962/ 1980/1981	2011 - 2013	12.576	3-Liter- Haus-Schule
o	Stuttgart	Grund- und Hauptschule	1954	2012 - 2016	2.774	Plusenergie- Schule
	Detmold	Berufsschule	1954 - 1962	2014 - 2016	10.016	Plusenergie- Schule
	Lohr	Schul- und Sportzentrum	1970	2013 - 2017	18.162	Plusenergie- Schule
	Overbach	Sciene College	2009	-	1.860	3-Liter- Haus-Schule
	Hohen Neuendorf	Grundschule	2011	-	4.645	Plusenergie- Schule
NEUBAU	Halle	Grundschule/ Hort	2013	-	2.757	Plusenergie- Schule
	Höhenkirchen	Kindertages- stätte	2013	-	1.286	Plusenergie- Schule
	Neumarkt	Gymnasium	2015	-	15.587	Plusenergie- Schule



und Energie

Querauswertung

- Eingesetzte innovative Technologien
- Monitoringdaten
 - Raumlufttemperaturen/-feuchte
 - Luftqualität
 - Energieverbrauch (berechnet/gemessen)
 - Energieverbrauchsanteile (Lüftung, Beleuchtung, Nutzerstrom)
- Kosten
 - Netto-Investitionskosten KG 300/KG 400
 - Energiekosten
- Sozialwissenschaftliche Erhebungen bei Schülern und Lehrern zum Raumklima, Nutzereingriffsmöglichkeiten, Lernklima

	Innovative Komponenten		SANIERUNG						NEUBAU				
			Olbersdorf	Detmold	Lohr	Cottbus	Marktoberdorf	Rostock	Höhenkirchen- Siegertsbrunn	Halle	Hohen Neuendorf	Overbach	Neumarkt
	Hochwertiger Wärmeschutz	•		•		•		•		•		•	
	3-fach Wärmeschutzverglasung	•		•		•		•	•	•		•	
	Elektrochrome Verglasung											•	
	Automatisierter Sonnenschutz	•		•		•		•	•	•	•	•	
BAU	Tageslichtlenkung	•				•		•				•	
	Phasenwechselmaterialien					•			•	•			
	Nachtlüftung passiv	•											
	Nachtlüftung aktiv			•		•		•		•			
	Passive Kühlung	•				•				•		•	
	Lüftungsanlage mit WRG	•		•		•		•		•	•	•	
Ж	Abluftanlage												
ANLAGE	Gebäudeleittechnik	•		•		•	•	•	•	•	•	•	
A	LED-Beleuchtung	•		•				•					
	Stromspeicher									•			
Ŋ	Photovoltaik	•		•				•		•			
NOS	Solarthermie					•				•			
SOR	Geothermie	•				•				•		•	
ENERGIEVERSORGUNG	Biogas												
GIE	Biomasse												
Æ	Windkraft							•		•			
ū	Fernwärme			•		•		•		•			

Die EnEff:Schule-Schulen - Wärmeversorgung

3 verschiedene Hauptwärmeerzeuger

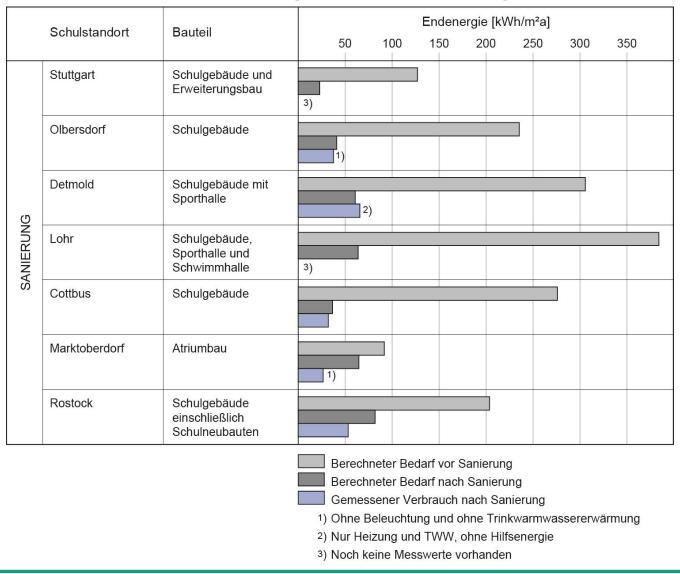
	Schulort	Wärme	pumpe	Fernwärme	Pellet-	
	Schulort	Geothermie	Eisspeicher	remwanne	Kessel	
	Olbersdorf	•				
ව	Detmold					
Sanierung	Lohr					
ë.	Cottbus					
an	Marktoberdorf					
S	Rostock					
	Stuttgart					
	Halle					
Nenpan	Hohen Neuendorf				•	
<u>le</u> u	Overbach					
2	Neumarkt					
	Höhenkirchen					

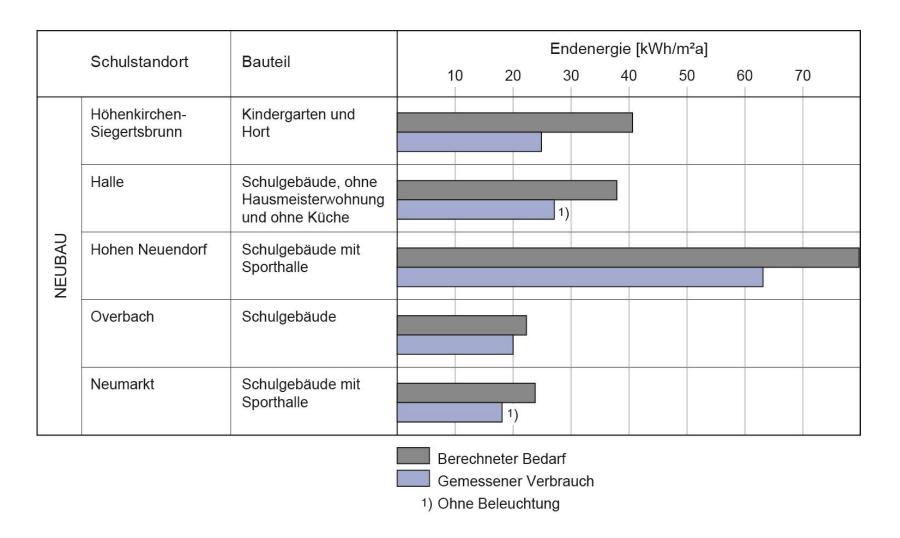
Quelle Bilder: [1], [2], [3]

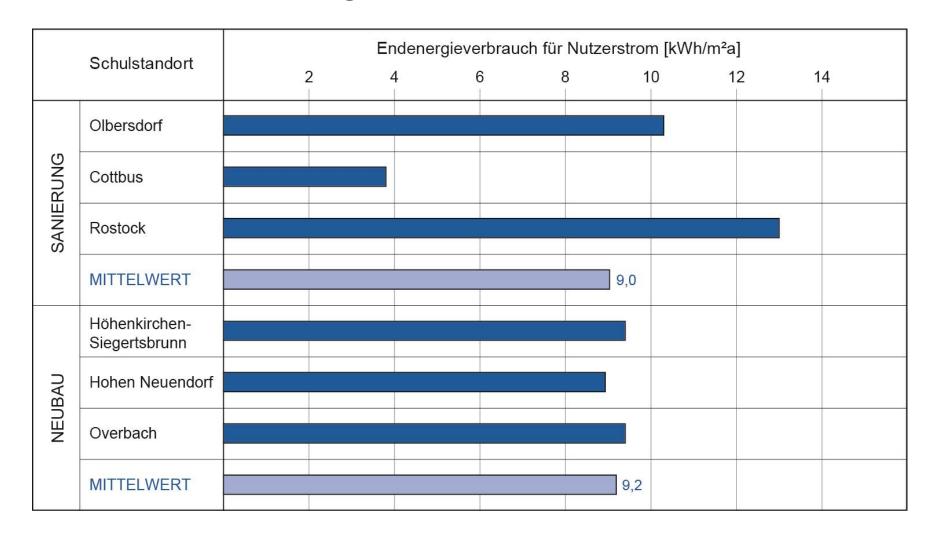
Die EnEff:Schule-Schulen

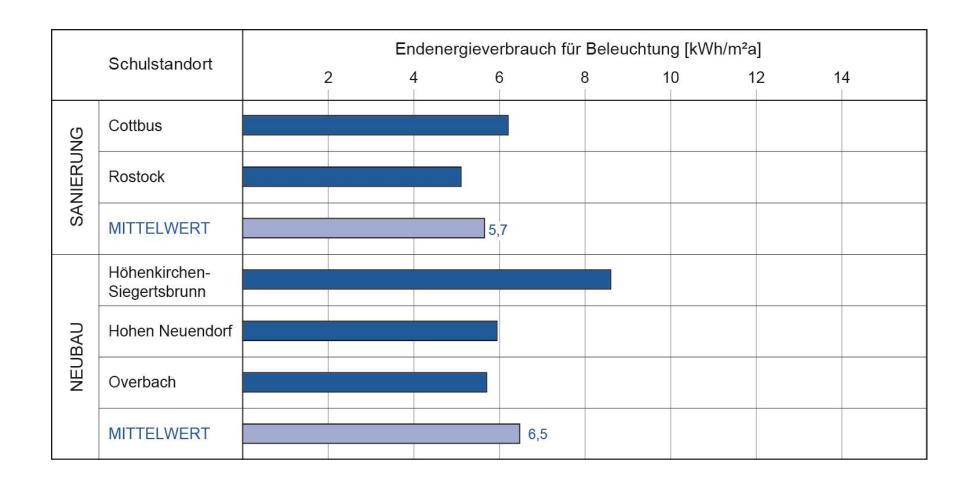
4 verschiedene Arten der Lüftung

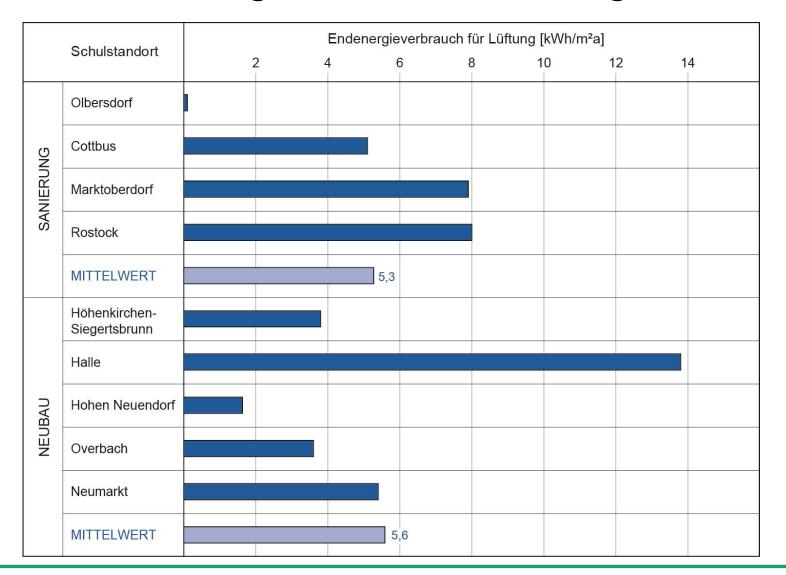
	Schulort	Zentrale mech. Lüftung	Dezentrale mech. Lüftung	Hybride Lüftung	Abluft- anlagen
	Olbersdorf				
<u>D</u>	Detmold				
Sanierung	Lohr				
<u>ë</u>	Cottbus				
an	Marktoberdorf				
S	Rostock				
	Stuttgart				
	Halle				
Neubau	Hohen Neuendorf			•	
le u	Overbach				
_	Neumarkt				
	Höhenkirchen				



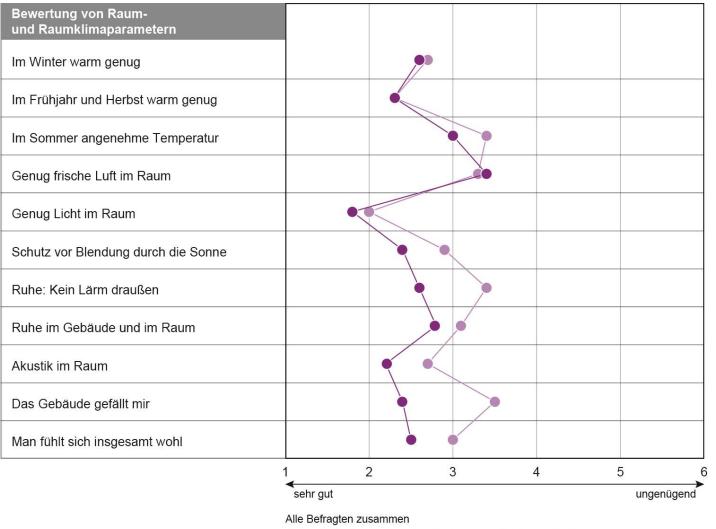

Quelle Bilder: [4], [5]


Querauswertung Endenergie - Sanierung


Querauswertung Endenergie - Neubau


Querauswertung Endenergieverbrauch Nutzerstrom

Querauswertung Endenergieverbrauch für Beleuchtung


Querauswertung Endenergieverbrauch für Lüftung

Luftqualität

- Nach wie vor ist CO₂ die vorherrschende Bewertungsgröße
- Es wird empfohlen, CO₂-Konzentrationen <1200 ppm anzustreben
- Enthalpie der Luft (Temperatur und Luftfeuchtigkeit) hat einen großen Einfluss auf das Luftqualitätsempfinden
 - kalte Luft wird als frischer empfunden
 - Warmer Luft wird eine schlechtere Qualität zugesprochen
- Geruch beeinflusst die empfundene Luftqualität
 - Vorstellung über die Ursache
 - Furcht vor negativer Beeinflussung
 - Vorprägung

Querauswertung Befragungsergebnisse

- Erstbefragung, vor den Sanierungs- / Neubaumaßnahmen
- Zweitbefragung, nach Bezug des sanierten / neuen Gebäudes

Empfehlung - Projektablauf

 Kooperative Zusammenarbeit zwischen Schulleitung, Bauherr und Architekt (Partizipation hohen Stellenwert einräumen)

Empfehlungen – Wärmeschutz und Speichermasse

- Gebäude mit exzellentem Wärmeschutz ausführen: $H'_{T} < 0.3$ W/m²K, 3fach-Wärmeschutzverglasung ($U_w < 0.8 \text{ W/m}^2\text{K}, \text{ g} > 0.55$)
- Bildungsgebäuden mit geringen inneren Speichermassen zeigen im Sommer häufig höhere Raulufttemperaturen als in massiven Gebäuden. Deshalb sollten:
 - mindestens die Trennwände, Decken und Estriche in massiver Bauweise ausgeführt werden
 - bei Leichtbaukonstruktionen Speichermassen über Phasenwechselmaterialien (PCM) in die Konstruktion eingebracht werden (Rückkühlpeak beachten)

Empfehlungen – Sonnenschutz I

- Schulgebäude mit Sonnenschutz ausstatten
- Ein außenliegender Sonnenschutz mit horizontalen Lamellen hat sich für Schulen bewährt
 - sehr gute Reduktion der Strahlungseinträge
 - Flexibilität
- Allerdings gibt es hierbei einige Punkte zu beachten:
 - Der Lamellenbehang sollte zweigeteilt ausgeführt werden, so dass die Lamellenstellung des oberen Drittels unabhängig vom Rest veränderbar ist, damit eine Tageslichtlenkung stattfinden kann
 - Die Lamellen sollten eine helle, reflektierende Oberfläche nach außen aufweisen
 - Die Lamellenbreite sollte groß gewählt werden (besserer Durchblick uns somit vermindertes Gefühl des eingesperrt sein)
 - Der F_c-Wert (Abminderungsfaktor für Sonnenschutzvorrichtungen) sollte unter 0,25 liegen

Empfehlungen – Sonnenschutz II

- Weitere zu beachtende Punkte:
 - Der Sonnenschutz sollte sich während der Sommermonate (z. B. von 1. Mai bis 30. September) ab Schulschluss über Nacht bis morgens in der »Geschlossen«-Stellung befinden
 - In nicht genutzten Räumen sollte der Sonnenschutz in den Sommermonaten automatisch geschlossen werden
 - Der Sonnenschutz sollte vor allem bei der Verwendung von Whiteboards mit Bedacht gewählt werden
 - Bei Smartboards ist darauf zu achten, dass die Lichtabschwächung groß genug ist, damit die Lehrinhalte auf dem Smartboard, selbst bei direktem Sonnenlicht auf die Fassade, gut sichtbar bleiben
 - Bei dezentralen, fassadenangeordneten Lüftungsgeräten keinen Sonnenschutz vor der Ansaug- und Ausblasöffnung plazieren

Empfehlungen - Fenster

- Es wird empfohlen, 3-fach-wärmeschutzverglaste Fenster und Fenstertüren zu verwenden
 - $U_{\rm w} < 0.8 \text{ W/m}^2\text{K}$
 - Gesamtenergiedurchlassgrad g von größer als 0,55
 - Lichttransmissionsgrad t_v mehr als 0,72
- Da diese Scheiben ein hohes Gewicht haben, sollten die öffenbaren Fensterflügel nicht bereiter als 80 cm sein
 - Schonung der Fensterscharniere
 - leichteres Öffnen für jüngere Schülerinnen und Schüler
 - schmälere Fensterflügel stören weniger, da sie weniger in den Klassenraum hinein ragen
- Zu große Fensterflächenanteile auf Süd-orientierten Fassaden führen zu einem dauerhaften Absenken des Sonnenschutzes im Sommer (entweder Sonnenschutz abschnittsweise regelbar oder Fensterflächen reduzieren)

Empfehlungen – Lüftung I

- Für Schulneubauten und auch für Schulsanierungen wird eine mechanische oder eine hybride Lüftung empfohlen
 - Rückwärmzahl von mehr als 80 %
 - Bypass integriert
 - regelbaren Bypass ausgerüstet sind, damit ein geregeltes Absenken der Zulufttemperatur ermöglicht wird.
- Derzeit gültigen Normen gehen von einer CO₂-Konzentration von 500 ppm über der Außenluftkonzentration (normales Maß an Erwartungen, empfohlen für neue und renovierte Gebäude). Die Konzentrationen verstehen sich als zeitlich gewichtete durchschnittliche Konzentrationen über die Dauer einer Unterrichtsstunde (45 min).

Empfehlungen – Lüftung II

- Zwei Regelungsstrategien haben sich bewährt:
 - CO₂-geführte Lüftung
 - stundenplangeführte Lüftung
- Beispiel für CO₂-geführte Anlagen:
 - Stufe 1: ab 800 ppm
 - Stufe 2: ab 1.200 ppm
 - Stufe 3: ab 1.500 ppm (maximaler Volumenstrom)
 - Unterhalb 800 ppm ist die Anlage nicht in Betrieb
- Abschaltung der Lüftungsanlagen bei geöffnetem Fenster nicht zu empfehlen

Empfehlungen – Lüftung, natürlich

- Studien haben gezeigt, dass eine uninformierte Fensterlüftung in Klassenräumen zu hohen CO₂-Konzentrationen führt
- Zur Unterstützung der Fensterlüftung eignen sich Lüftungsampeln, mit denen über die Farben grün, gelb und rot die CO₂-Konzentration im Klassenraum angezeigt wird. Ein solches Gerät zeigt kontinuierlich die Raumluftqualität an und gibt dadurch einen Hinweis, wann gelüftet werden soll. Folgende Farbzuordnungen haben sich bewährt:
 - grün: bis 900 ppm
 - gelb: ab 901 ppm
 - rot: ab 1.200 ppm

Empfehlungen – Lüftung, hybrid

- Möglichkeiten der hybriden Lüftung: Grundlüftung mit
 - hinzugeschaltener motorisch betriebene Fensteröffnung die nur in den Pausen agiert. Dabei ist für die Auslegung der Grundlüftung das Stundenplankonzept der Schule (Einzel- oder Doppelstunden) sowie Klassengrößen und Raumvolumen zwingend zu berücksichtigen.
 - Fensterlüftung durch die Raumnutzer, am Besten mit Unterstützung durch eine Nutzerinformation wie z.B. eine Lüftungsampel
- Eine motorisch betriebene Fensteröffnung kann auch ideal zur sommerlichen Nachtlüftung herangezogen werden.

Empfehlungen – Lüftung, dezentral

- Zuluft- und Fortluftöffnungen sollten nicht zu nahe beieinander liegen (Stichwort Kurzschlusslüftung)
- Da dezentrale Geräte im Klassenraum untergebracht sind, hängt die Akzeptanz sehr vom Ventilator- und Strömungsgeräusch ab. Es ist daher ratsam, das Gerät nicht in der höchsten Stufe zu betreiben. Dies ist möglich, wenn die Anlage ein ausreichend großes Fördervermögen aufweist.
- Aufgrund der großen Anzahl und da sich die Geräte häufig im Standby-Modus befinden, sollte die Standby-Leistung unter 10 W/Gerät bleiben.
- Der Filteraustausch sollte zeitnahe zur abgegebenen Meldung erfolgen, da ansonsten der Druckverlust weiter steigt und
 - gegebenenfalls die Luftvolumenströme nicht mehr erreicht werden
 - die Stromverbräuche steigen (Grenzdruckverlust-Berechnung)

Empfehlungen – Belichtung

- Für Klassenräume empfehlen sich raumhohe Verglasungen möglichst mit deckengleichem Sturz – deren Brüstungshöhe der Tischhöhe entspricht
- Im Oberlichtbereich können zur Verbesserung der Tageslichtnutzung in größeren Raumtiefen lichtlenkende oder lichtstreuende Verglasungen eingesetzt werden
- Findet eine Tageslichtlenkung an die Decke statt, sind die Decken- und Wandflächen mit einer möglichst hellen Oberfläche zu versehen
- Bei der Ausstattung der Klassenräume mit Whiteboards sollte der direkt am Whiteboard befindliche Fassadenbereich nicht verglast werden oder es sollte dort ein innenliegender Blendschutz realisieren werden, damit Reflektionen auf dem Whiteboard vermieden werden können

Empfehlungen – Beleuchtung

- LED-Beleuchtung
- Es ist eine tageslicht- und präsenzabhängige Regelung zu empfehlen
- In der Regel sind die Beleuchtungsreihen parallel zu den Fenstern angeordnet. Diese Reihen sollten, wenn Präsenz vorhanden ist, tageslichtabhängig geregelt werden
- Sollen Klassenräume zeitweise mit Nutzungen belegt werden, welche eine Beleuchtungsstärke erfordern, so sollte dies über einen Schlüsselschalter eingestellt werden können
- Die Tafelbeleuchtung sollte manuell bedien- und dimmbar sein
- Flure, WC's, Keller- und Lagerräume sollten präsenzabhängig geregelt werden, wenn eine bestimmte Lichtstärke unterschritten wird
- Wenn Whiteboards installiert werden, so ist bei der Beleuchtung darauf zu achten, dass sich diese nicht störend in den Whiteboards widerspiegelt, wodurch die Lesbarkeit eingeschränkt ist.

Lessons Learned

Organisation

 Kooperative Zusammenarbeit zwischen Schulleitung, Bauherr und Architekt (-> Partizipation hohen Stellenwert einräumen)

Monotoring / Inbetriebnahme

- Monitoring durchführen zur Inbetriebnahme und für effizienten Gebäudebetrieb
- Vor Abnahme der Bauleistung Datenpunktprüfung durchführen
- Abnahme der Anlagentechnik: Messwerte der GLT heranziehen, unter realen Betriebsbedingungen prüfen (Nutzer einbeziehen)

Wärmeschutz

Gebäude mit exzellentem Wärmeschutz ausführen: H'_T < 0,3 W/m²K, 3-fach-Wärmeschutzverglasung (Uw < 0,8 W/m²K, g > 0,55)

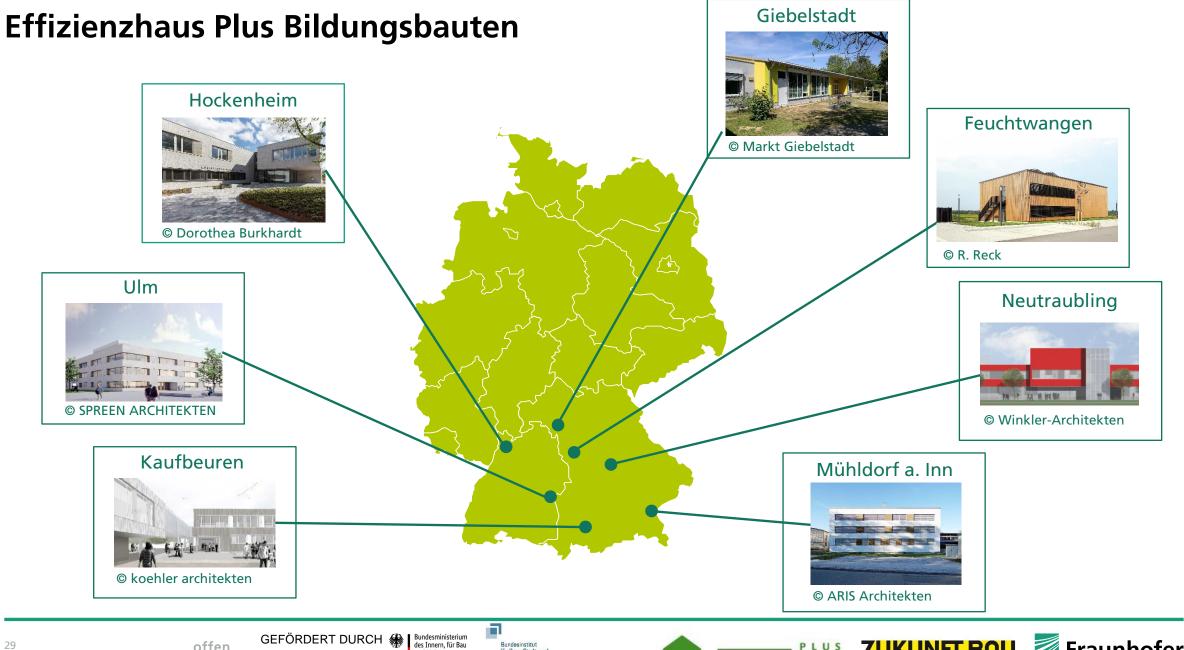
Lüftung

- Lüftungsanlage mit WRG (Neubau: zentral, Sanierung: dezentral)
- Außenluftvorwärmung über erdreichgekoppelte Wärmetauscher (Schutz vor Vereisung)
- Heizperiode: Lüftungsanlage übrige Zeit: natürliche Fensterlüftung oder
- CO₂-geführte Lüftungsregelung: mind. 3 Ventilatorstufen, < 1500 ppm
- Mechanische Lüftung nach Stundenplan: ~ 20 m³/(h*Person), zus. Fensterlüftung in den Pausen, < 1500 ppm
- Sommerliche Nachtlüftung über automatische Fenster oder Lüftungsanlage mit Bypass

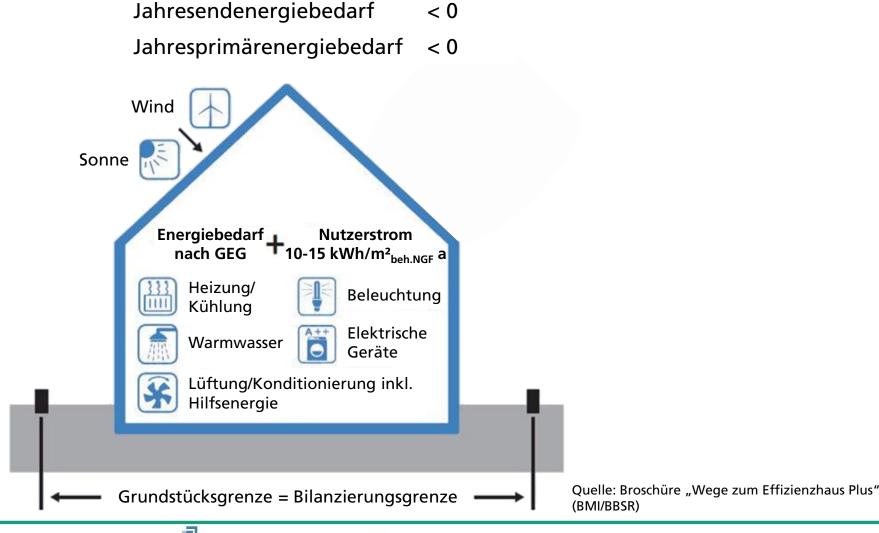
Heizung/Kühlung/Regelung

- Regenerative Energie nutzen für Wärmeerzeugung
- Dachflächen mit PV belegen
- Keine Klimatisierung (hoher Energieverbrauch, hygienische Probleme)
 - Wenn Kühlung, dann nur passiv über erdreichgek. Flächenkühlung
- Gebäudeleittechnik (GLT) für die Regelung von Anlagentechnik, Beleuchtung, Belüftung und Sonnenschutz (einheitliche Bedienoberfläche)
- Raumtemperaturregelung über Einzelraumregelung nach Stundenplan

Beleuchtung/Sonnenschutz


- LED-Beleuchtung
- Tageslicht- und präsenzabhängige Beleuchtung (300 lx für Schulbetrieb, 500 lx für Erwachsenenbildung)
- Jalousien mit Lichtlenkung: nachts geschlossen, zu Beginn der Schulstunde 300 lx, Schlüsselschaltung für Lehrer

© Fraunhofer IBP

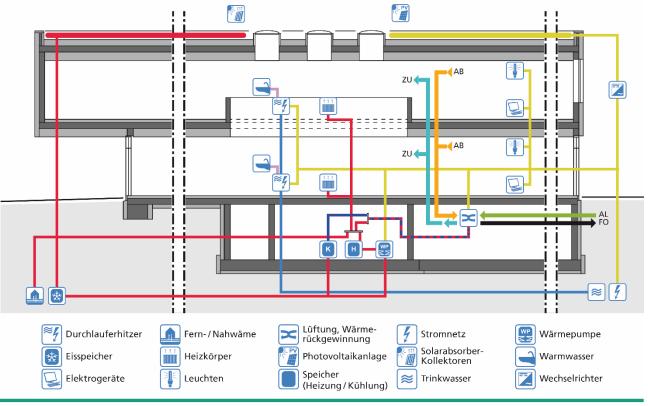


29

Wie wird der Effizienzhaus Plus-Standard definiert?

30

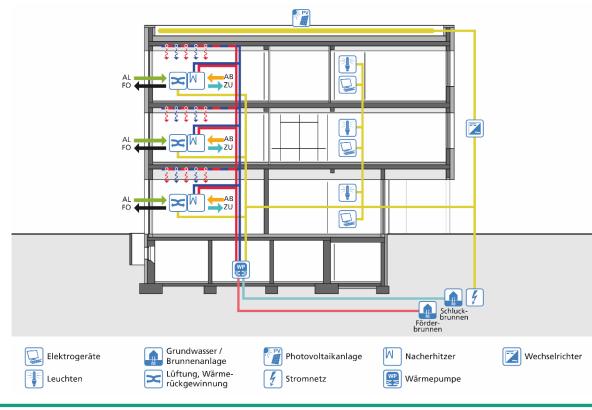
© Fraunhofer IBP


GEFÖRDERT DURCH

Louise-Otto-Peters-Schule, Hockenheim

Standort	Schubertstraße 11, 68766 Hockenheim
Baujahr	2016–2017
Bauherrschaft	Eigenbetrieb Bau und Vermögen Rhein-Neckar-Kreis
Architekt	Roth.Architekten.GmbH, Schwetzingen
Monitoring	ina Planungsgesellschaft mbH, Darmstadt
Technische Gebäude- ausrüstung	Ingenieurbüro Willhaug GmbH, Mosbach; BF Controls Ltd., Schwabach; Beck Elektroanlagen GmbH, Helmstadt-Bargen

- Bivalente Wärmeerzeugung mit Sole-Wasser-Wärmepumpe und Fernwärme für Spitzenlast
- Heizung zu 10 % über Radiatoren und 90 % Luftheizung



Gymnasium in Neutraubling

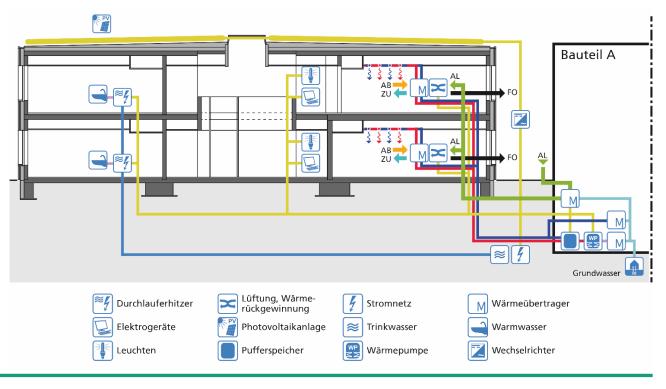
Standort	Gregor-Mendel-Straße 5, 93073 Neutraubling
Baujahr	Bauabschnitt 1: Neubau 2017–2018; Bauabschnitte 2 und 3: Sanierung 2020–2021
Bauherrschaft	Landkreis Regensburg
Architekt	Architekturbüro Winkler-Architekten, Wörth an der Donau
Monitoring	Technische Universität Dresden, Institut für Energietechnik – IET; EA Systems Dresden GmbH
Technische Gebäudeausrüstung	Ingenieurbüro Scholz GmbH & Co. KG, Regensburg

- Reversible Wasser-Wasser-Wärmepumpen mit Brunnen als Wärmequelle
- Aktive Kühlung für Serverräume, passive Kühlung (direkte Brunnenwassernutzung) für Klassenzimmer
- Heiz- und Kühldecken

Berufliches Schulzentrum in Mühldorf am Inn

Standort	Innstraße 41, 84453 Mühldorf am Inn		
Baujahr	2016–2020		
Bauherrschaft	Landkreis Mühldorf am Inn		
Architekt	ARGE Schmuck-Anglhuber: Architekturbüro Schmuck, München; ARIS – Anglhuber und Reithmeier Partnerschaftsgesellschaft mbB, Kraiburg am Inn		
Monitoring	Fachhochschule Rosenheim		
Technische Gebäudeausrüstung	COPLAN AG, Mühldorf am Inn; Ingenieurteam Mühldorf, Mühldorf am Inn		

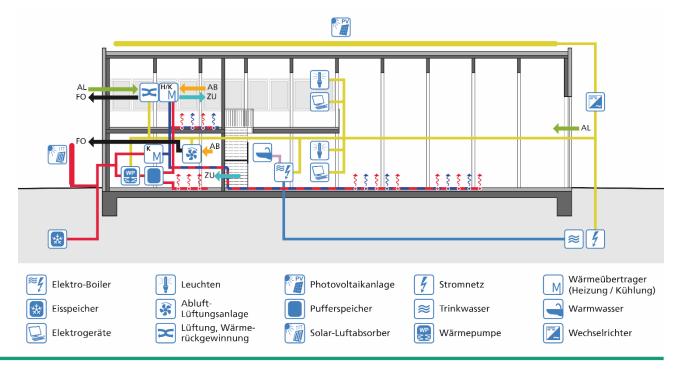
- Bivalente Wärmeerzeugung mit Sole-Wasser-Wärmepumpe und Gas-Brennwertkessel für Spitzenlast
- Vierleiterverteilsystem: 45/35 °C für Neubau,
 70/40 °C für Bestand und Trinkwarmwasser



Jakob-Brucker-Gymnasium in Kaufbeuren

Standort	Neugablonzer Straße 38, 87600 Kaufbeuren
Baujahr	2017–2020
Bauherrschaft	Stadt Kaufbeuren
Architekt	köhler architekten + beratende ingenieure, Gauting in Kooperation mit mse architekten gmbh, Kaufbeuren
Monitoring	EA Systems Dresden GmbH; Technische Universität Dresden, Institut für Energietechnik – IET
Technische Gebäudeausrüstung	Güttinger Ingenieure, Kempten

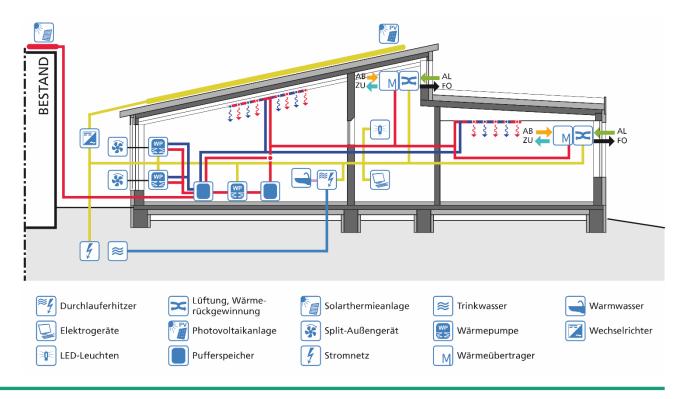
- Bivalente Wärmeerzeugung mit Wasser-Wasser-Wärmepumpe und Power-to-Heat mit überschüssigem PV-Strom
- Deckenheizung/-kühlung und Luftheizung/-kühlung



Forschungshalle der HS Ansbach in Feuchtwangen

Standort	An der Hochschule 1, 91555 Feuchtwangen
Baujahr	2017–2018
Bauherrschaft	Stadt Feuchtwangen
Architekt	HEF – Holzinger Eberl Fürhäußer Architekten Ansbach, in Kooperation mit dem Stadtbauamt Feuchtwangen
Monitoring	ina Planungsgesellschaft mbH, Darmstadt
Technische Gebäudeausrüstung	Bautz Ingenieurbüro, Ansbach

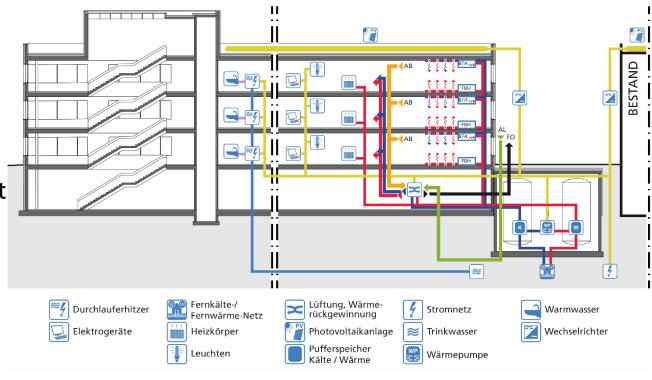
- Wärmeerzeugung mit Sole-Wasser-Wärmepumpe
- Heizung und Kühlung über Fußbodenheizung bzw. Aktivierung der Bodenplatte



Erweiterungsbau der Grundschule in Giebelstadt

Standort	Grundschule Giebelstadt, Schulstraße 1, 97232 Giebelstadt
Baujahr	2017–2018
Bauherrschaft	Markt Giebelstadt
Architekt	Haase & Bey Architekten PartG mbB, Karlstadt
Monitoring	Technische Universität Dresden, Institut für Energietechnik – IET; EA Systems Dresden GmbH
Technische Gebäudeausrüstung	HGT Ingenieure GmbH, Eibelstadt

- Kaskadierendes Wärmepumpensystem mit unterstützender Solarthermie (Nachbargebäude)
- Wärmeverteilung über Deckensegel und Lüftungsanlage



Ersatzneubau der Hochschule Ulm

Standort	Albert-Einstein-Allee 53, 89081 Ulm			
Baujahr	2018–2020			
Bauherrschaft	Land Baden-Württemberg vertreten durch Ver- mögen und Bau Baden-Württemberg, Amt Ulm			
Architekt	Entwurfsplanung (LPH 1–4): Vermögen und Bau Baden-Württemberg, Amt Ulm; Ausführungsplanung (LPH 5–8): SPREEN ARCHITEKTEN Partnerschaft mbB, München; Baudurchführung (LPH 6–8): planer gmbh sterr-ludwig, Blaustein			
Monitoring	Fraunhofer-Institut für Bauphysik IBP, Abteilung EER, Holzkirchen			
Technische Gebäudeausrüstung	ee concept, Darmstadt; Planungsgruppe M+M AG, Böblingen, mit fachlicher Unterstützung von Vermögen und Bau BW, Amt Ulm und Hochschule Ulm			

- Reversible Wasser-Wasser-Wärmepumpe mit Fernwärme zur Spitzenlastabdeckung und Fernkälteabkühlung
- Wärmeübergabe durch Bauteilaktivierung, Fußbodenheizung, Heizkörper und Luftheizung

Übersicht der Bildungsbauten im Effizienzhaus Plus-Standard

des Innern, für Bau

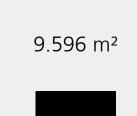
GEFÖRDERT DURCH

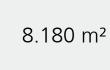
Berufliches

Schulzentrum

Hochschule

Grundschule


624 m²


Ulm

des Innern, für Bau

Gymnasium

Übersicht der Bildungsbauten im Effizienzhaus Plus-Standard

	Hockenheim	Neutraubling	Mühldorf a. Inn	Kaufbeuren	Feuchtwangen	Giebelstadt	Ulm
	Berufliches Schulzentrum	Gymnasium	Berufliches Schulzentrum	Gymnasium	Hochschule	Grundschule	Hochschule
5	3.766 m ²	10.388 m²	9.596 m²	8.180 m²	531 m²	624 m²	10.003 m²
	Neubau	Neubau / Sanierung	Neubau	Neubau / Sanierung	Neubau	Neubau	Neubau

des Innern, für Bau

GEFÖRDERT DURCH 🧥

Maßnahme

Querauswertung Bildungsbauten: Planungsdaten

- Baulicher Wärmeschutz
- Lüftungskonzepte
- Wärmeversorgung: Art
 - Thermische Nennleistung der Wärmepumpen
 - Monovalente Wärmepumpen: 22 63 W/m² beh. NGF
 - Wärmepumpen als Grundlast: 8 20 W/m² beh. NGF.
- Strombedarf Beleuchtung und Nutzerstrom:
 - Strombedarf für Geräte höher als Strombedarf für Beleuchtung
 - Summe Endenergiebedarf: 13 bis 21 kWh/($m^2_{beh. NGF} \cdot a$); $\emptyset = 16,3 \text{ kWh/}(m^2_{beh. NGF} \cdot a)$
- Photovoltaik:
 - Flächen: 246 2.536 m², $Ø = 0.3 \text{ m}^2_{PV} / \text{ m}^2_{NGF}$
 - Peakleistung: $\emptyset = 51 \text{ W}_p/\text{m}^2_{\text{beh. NGF}}$
 - Eigennutzungsgrad: 40 75 % des erzeugten PV-Stroms
- Endenergiebilanz inkl. Überschuss
- Primärenergiebilanz inkl. Überschuss:
 - PE-Bedarf: 18 34 kWh/(m² _{beh. NGF} ·a); PE-Gutschrift: 38 123 kWh/(m² _{beh. NGF} ·a)
 - PE-Überschuss: Ø = 39 kWh/($m^2_{beh. NGF} \cdot a$)

© Winkler-Architekten

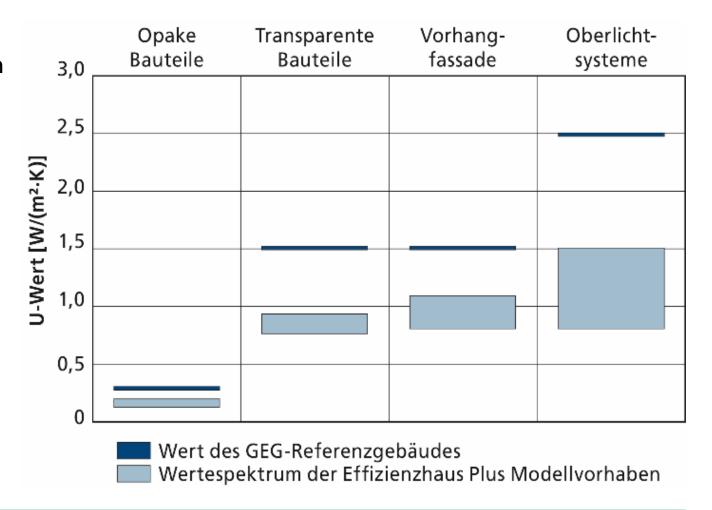
© mse architekten

© Haase-Bey Architekten

© Rhein-Neckar-Kreis

© ARIS Architekten

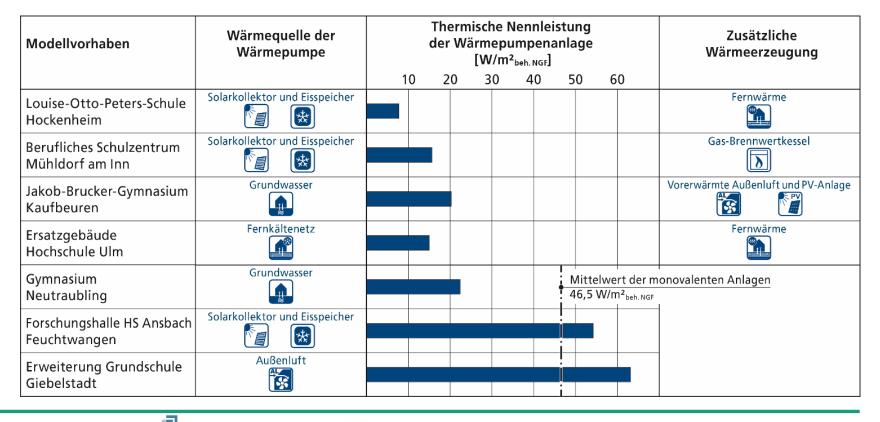
© Stadt Feuchtwangen



© SPREEN ARCHITEKTEN

Querauswertung Bildungsbauten: Baulicher Wärmeschutz

- Hochwertig, aber nicht außergewöhnlich
- Unterschreitung U-Werte des Referenzgebäudes um
 - 39 bis 68 %
 - \bigcirc Ø = 50 %


Querauswertung Bildungsbauten: Lüftungsanlagen

- Lüftungssituation in Bildungsbauten besonders wichtig: Sicherstellung einer guten Raumluftqualität
- Sehr unterschiedliche Lüftungskonzepte: geprägt durch individuelle Nutzung
- Dezentral = raumweise; zentral = bauabschnittsweise
- Hohe Wärmerückgewinungsgrade 70 90 %
- Regelung: meist in Abhängigkeit der Raumluftqualität, natürliche Lüftung im Sommer

	Lüftungskonzept der Lehrräume						
	Louise-Otto- Peters-Schule Hockenheim	Gymnasium Neutraubling	Berufliches Schulzentrum Mühldorf am Inn	Gymnasium	Forschungshalle HS Ansbach Feuchtwangen	Erweiterung Grundschule Giebelstadt	Ersatzgebäude Hochschule Ulm
Dezentral							
Zentral							
Wärmerück- gewinnung	84%	83 %	90 %	87 %	81 %	80 %	71 %

Querauswertung Effizienzhaus Plus-Bildungsbauten: Wärmeversorgung

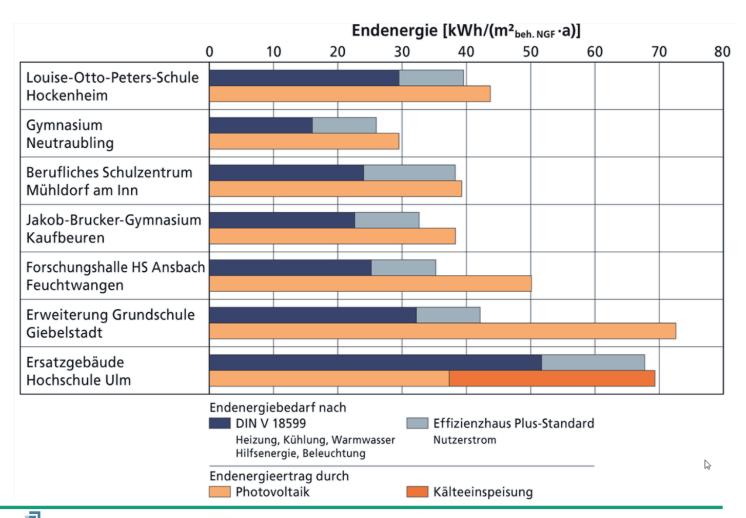
- Wärmepumpen in allen Vorhaben zur Nutzung regenerativer lokaler Wärmequellen
- Energiequellen: thermische Solaranlagen, Eisspeicher, Grundwasser, Außenluft, Fernkältenetz
- Ergänzung durch:
 - Gas-Brennwertkessel
 - Fernwärme
- Therm. Nennleistung:
 - Monovalente Wärmepumpen: 22 - 63 W/m² beh. NGF
 - Wärmepumpen als Grundlast: 8 - 20 W/m² beh. NGF

GEFÖRDERT DURCH 🦓

Querauswertung Effizienzhaus Plus-Bildungsbauten: Photovoltaik

- Im Mittel etwa 0,3 Quadratmeter PV-Fläche je Quadratmeter beheizte Nettogrundfläche
- Peakleistungen Photovoltaikanlagen:
 - 34 89 W_p/m² beh. NGF
 - \bigcirc Ø = 51 W_p/m² beh. NGF

		Fläche der Photovoltaikanlage						
	Louise-Otto- Peters-Schule Hockenheim	Gymnasium Neutraubling	Berufliches Schulzentrum Mühldorf am Inn	Jakob-Brucker- Gymnasium Kaufbeuren	Forschungshalle HS Ansbach Feuchtwangen	Erweiterung Grundschule Giebelstadt	Ersatzgebäude Hochschule Ulm	
Gesamt	1.048 m²	2.403 m ²	2.563 m ²	1.787 m²	246 m²	323 m²	1.880 m²	
Visualisierung der Flächen								



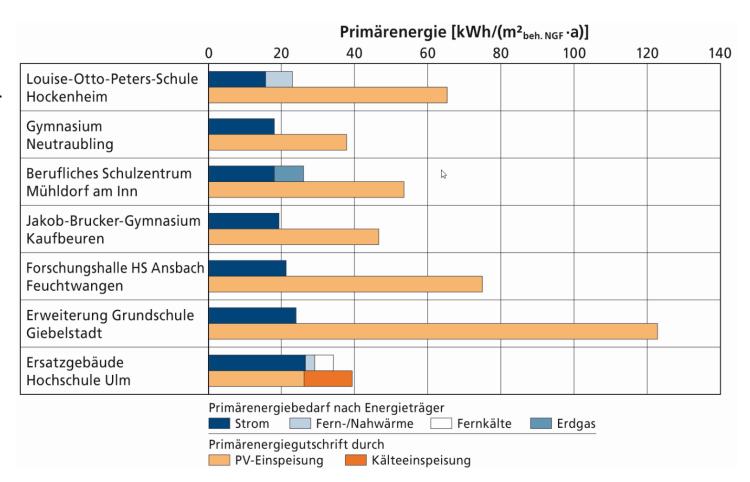
GEFÖRDERT DURCH

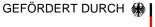
© Fraunhofer IBP

Querauswertung Effizienzhaus Plus-Bildungsbauten: Endenergiebilanz

- berechneter jährlicher **Endenergiebedarf:**
 - $26 68 \text{ kWh/(m}^2 \text{ beh. NGF} \cdot a)$
- berechneter jährlicher erneuerbare Endenergieertrag:
 - \blacksquare 30 73 kWh/(m² beh. NGF ·a)
- → Endenergieüberschuss:
 - \bigcirc Ø = 9 kWh/(m² beh. NGF ·a)

GEFÖRDERT DURCH

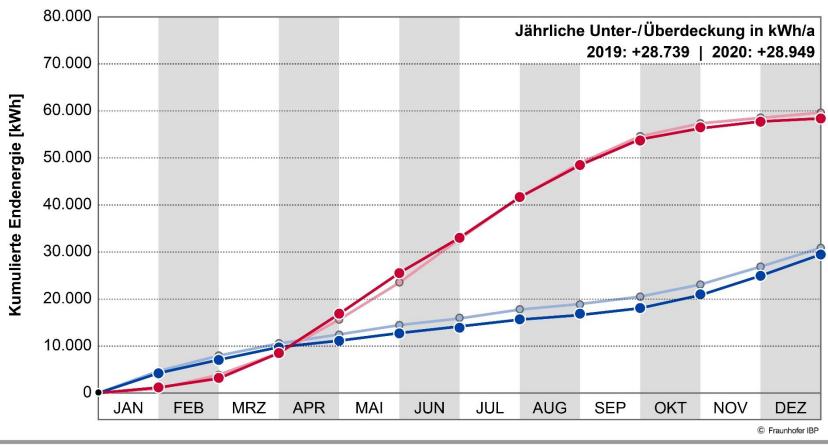




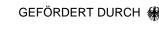
46

Querauswertung Effizienzhaus Plus-Bildungsbauten: Primärenergiebilanz

- 4 von 7 Modellprojekten verwenden Strom als alleinigen Energieträger
- übrige 3 Modellvorhaben verwenden Nah- bzw. Fernwärme, Fernkälte oder Erdgas
- berechneter jährlicher Primärenergiebedarf
 - 18 34 kWh/(m² _{beh. NGF} ·a)
- berechnete primärenergetische Gutschriftmenge durch Netzeinspeisungen:
 - 38 123 kWh/(m² _{beh. NGF} ·a)
- → Primärenergieüberschuss
 - \bigcirc Ø = 39 kWh/(m² _{beh. NGF} ·a)



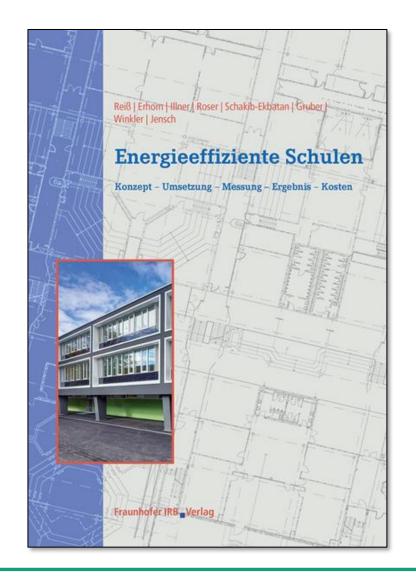
Querauswertung Effizienzhaus-Plus Bildungsbauten: Monitoring-Daten Erweiterungsgebäude Grundschule Giebelstadt



ENERGIEQUELLE Messjahr 2019 Messjahr 2020 *Photovoltaik

ENERGIENUTZUNG Gebäudeverbrauch

Messdaten erhalten von


des Innern, für Bau

Weitere Ergebnisse der beiden Begleitforschungen finden Sie hier...

Kontakt:

Hans Erhorn
 Principal Adviser für das
 Fraunhofer-Institut für Bauphysik
 Abteilung Energieeffizienz und Raumklima
 E-Mail: hans.erhorn@ibp-extern.fraunhofer.de

- BMWi-Begleitforschung Energieeffiziente Schulen (EnEff:Schule)
 - https://www.eneff-schule.de
- Forschung für energieoptimierte Gebäude und Quartiere
 - https://www.energiewendebauen.de
- Gefördert durch BMWi
- Forschungsinitiative Effizienzhaus Plus: https://www.zukunftbau.de/effizienzhausplus/modellvorhaben/
- Gefördert durch BMI und BBSR

